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With new algorithms and tools, developers can apply high-strength 
combinatorial testing to detect elusive failures that occur only when 
multiple components interact.

Suppose we want to test a process-control 
system that has 20 sensors, each with 10 
possible values. As usual, exhaustive test-
ing is out of the question: 1020 tests would 

require billions of years to execute. We could test 
all 10 values for each sensor with only 10 tests, but 
that’s unlikely to be enough. Experience suggests 
that some faults are triggered only by unusual 
combinations—hence, the popularity of pairwise 
testing, which is based on the observation that 
software faults often involve interactions between  
two parameters. In pairwise testing, all possible 
pairs of parameter values are covered by at least 
one test, and good tools are available to generate 
arrays with the value pairs.1 By selecting parameter 
values carefully, we could test all value pairs for the 
20 sensors in our example with only 180 tests.

But what if some failure is triggered only by a 
very unusual combination of three, four, or more 
values? It’s unlikely that our 180 tests would de-
tect this unusual case. We would need to test 
at least three- and four-way value combinations. 
Combinatorial testing beyond pairwise is rare, 
however, because good algorithms for higher-
strength combinations haven’t been available or 
were too slow for practical use. In the past few 
years, advances in covering-array algorithms, 
integrated with model checking or other test-
ing approaches, have made it practical to extend 
combinatorial testing beyond pairwise tests. 
The US National Institute of Standards and 
Technology (NIST) and the University of Texas, 
Arlington, are now distributing freely available 
methods and tools for constructing large t-way 
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combination test sets (known as covering ar-
rays), converting covering arrays into executable 
tests, and automatically generating test oracles 
using model checking (http://csrc.nist.gov/acts). 
In this review, we focus on real-world problems 
and empirical results from applying these meth-
ods and tools. 

Motivation and Challenges
If some failure is triggered only by an unusual 
combination of more than two sensor values, 
how many testing combinations are enough to 
detect all errors? What degree of interaction 
occurs in real system failures? Surprisingly, re-
searchers hadn’t studied these questions when 
NIST began investigating causes of software 
failures in 1996. Study results showed that, 
across various domains, all failures could be 
triggered by a maximum of four- to six-way in-
teractions.2 As Figure 1 shows, the detection 
rate increased rapidly with interaction strength. 
Within the NASA database application, for ex-
ample, 67 percent of the failures were triggered 
by only a single parameter value, 93 percent 
by two-way combinations, and 98 percent by 
three-way combinations.2 The detection-rate 
curves for the other applications studied are 
similar, reaching 100 percent detection with 
four- to six-way interactions.

These results are not conclusive, but they 
suggest that the degree of interaction involved 
in faults is relatively low, even though pairwise 

testing is insufficient. Testing all four- to six-
way combinations might therefore provide rea-
sonably high assurance. As with most things, 
however, the situation isn’t that simple. Quite a 
few practical problems remain. Efficiently gen-
erating test suites to cover all t-way combina-
tions is a difficult mathematical problem that 
researchers have studied for nearly a century. 
In addition, not many applications have only a 
few discrete values for each variable; most in-
clude continuous variables with huge ranges of  
values, depending on the hardware on which 
the program runs. Most glaring of all is the 
oracle problem: determining the correct result 
that should be expected from the system under 
test (SUT) for each set of test inputs. Generat-
ing 1,000 test data inputs is of little help if we 
can’t determine what the SUT should produce 
as output for each of the 1,000 tests.

With the exception of generating covering ar-
rays, these stumbling blocks are common to all 
types of software testing, and researchers have 
developed good techniques for dealing with 
them. The challenge in making combinatorial 
testing practical, then, is to find efficient algo-
rithms to generate covering arrays and effective 
methods of integrating the tests produced into 
the testing process.

Generating Covering Arrays
The first step in combinatorial testing is to find 
a set of tests (a covering array) that will cover 
all t-way combinations of parameter values for 
the desired strength t. In pairwise testing, t = 2, 
and good algorithms are widely available. For 
stronger assurance, the results discussed earlier 
suggest that we need a set of tests that covers all 
four-way or higher-strength combinations of pa-
rameter values. The covering array specifies test 
data, where we can regard each row of the array 
as a set of parameter values for an individual test. 
Collectively, the array’s rows include every t-way 
combination of parameter values at least once.

Figure 2 gives an example that shows a three-
way covering array for 10 variables with two 
values each. In this array, any three columns 
contain all eight possible values for three bi-
nary variables. Therefore, this set of tests will 
exercise all three-way combinations of input 
values in only 13 tests, compared with 1,024 for 
exhaustive coverage. We can generate similar 
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Figure 1. Error-detection rates for four- to six-
way interactions in four application domains: 
medical devices, a Web browser, an HTTP 
server, and a NASA distributed database.
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arrays to cover up to all six-way combinations. 
New algorithms, such as In-Parameter Order, 
General (IPOG) and the Bryce-Colbourn Den-
sity algorithm,3 make this possible with greater 
efficiency than previous tools.For example, an 
existing tool required 5,400 seconds to produce 
a less optimal test set than the IPOG algorithm 
generated in 4.2 seconds. These new tools make 
it possible to apply combinatorial testing to ap-
plications that previously were prohibitive in 
time and cost.

Tackling the Oracle Problem
Although Figure 2 shows that we can accomplish 
interaction testing beyond pairwise with far few-
er tests than are required for exhaustive testing, 
real systems typically have more than 10 binary 
parameters. How many tests are needed for real-
world systems? 

In general, the number of tests required for  
t-way combinatorial testing of n parameters with 
v values apiece is proportional to vt log n. So, the 
number of tests needed for four-way testing is 
several times that required for three-way test-
ing. On the other hand, testing 30 parameters 
requires a modest increase over the number 
of tests needed for 20. For example, a system 
with 20 variables, five values each, requires 444 
tests for three-way coverage but 3,019 tests for 
four-way coverage with IPOG. A much smaller 
penalty is incurred for covering more variables: 
increasing the number of variables to 30 re-
quires 3,749 tests for four-way coverage, a 24 
percent increase.

However, even with efficient algorithms to pro-
duce covering arrays, the oracle problem remains. 
Taking advantage of combinatorial testing might 
require numerous tests in some cases, although 
not always. Approaches to addressing the oracle 
problem for combinatorial testing include crash 
testing, embedded assertions , and model checker-based 
test generation. 

Crash testing is the easiest and least expensive 
approach: simply run tests against the SUT to 
check whether any unusual combination of input 
values causes a crash or other easily detectable 
failure. This form of combinatorial testing could 
be regarded as a disciplined form of fuzz testing, 
which sends random values against the SUT.5 

Although pure random testing will generally 
cover a high percentage of t-way combinations, 

100 percent coverage of combinations requires a 
random test set much larger than a covering ar-
ray. For example, all three-way combinations of 
10 parameters with four values each can be cov-
ered with 151 tests using IPOG. Purely random 
generation requires approximately 914 tests to 
provide full three-way coverage.

Embedded assertions are increasingly popu-
lar. This lightweight formal method embeds 
assertions within the code to ensure proper 
relationships between data, such as precondi-
tions, postconditions, or input value checks. 
Tools such as the Java Modeling Language 
(JML) can help us introduce complex asser-
tions, effectively embedding a formal specifica-
tion within the code.6 The embedded assertions 
serve as an executable form of the specification, 
thus providing an oracle for the testing phase. 
With embedded assertions, exercising the ap-
plication with all t-way combinations can pro-
vide reasonable assurance that the code works 
correctly across a range of inputs. JML has been 
used successfully as a high-level (that is, not 
fully complete) specification of system behavior 
to test smart cards,7 with embedded JML asser-
tions acting as an oracle for combinatorial tests. 
The results showed that 80 to 90 percent of er-
rors could be found in this way.

In a more comprehensive approach, model- 
checker based test generation uses a mathematical 
model of the SUT and a model checker to generate 
expected results for each input. Conceptually, the 
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Figure 2. Three-way covering array for 10 
parameters with two values each. Any three 
columns contain all eight possible values for 
three binary variables.



22	 IT Pro  May/June 2008

INFORMATION & QUALITY ASSURANCE

model checker explores all system model states to 
determine if a property claimed in a specification 
statement is true. A model checker is particularly 
valuable because it not only reports that a claim 
is false but also provides a counterexample that 
includes a trace of parameter input values and 
states that will prove it is false. In effect, this is 
a complete test case—that is, a set of parameter 
values and the expected result. It’s then simple to 
map these values into complete test cases in the 
syntax needed for the SUT.8 Figure 3 illustrates 
this process.

As an example, we applied the model check-
ing approach to combinatorial testing on a 
module from the US Federal Aviation Adminis-
tration (FAA) Traffic Collision Avoidance Sys-
tem (TCAS), which had been used in previous 
test-method studies. The module used 12 pa-
rameters: seven Boolean, two three-value, one 
four-value, and two with 10 values. Research-
ers from Siemens developed 41 versions seeded 
with realistic faults. Two thirds of the faulty 
versions had single changes such as replacing a 
constant with another constant, replacing “>=” 
with “>,” or dropping a condition. The rest in-
volved either multiple changes or more complex 
single changes. Covering all two- to six-way 
combinations for this module required 17,000 
tests. Creating the formal system specification 
required time and expertise in formal meth-
ods, but once the specification was in place, we 
generated and executed all 17,000 tests in a few 
minutes.9 Pairwise testing detected 53 percent 
of the faults, but testing through five-way com-
binations provided 100 percent detection. 

Two Ways to Use Covering Arrays
The two basic approaches to combinatorial test-
ing use combinations of either configuration 
parameter values or input parameter values. In 
the first approach, we use the covering array to 
select values of configurable parameters, pos-
sibly with the same tests run against all config-
uration combinations. For example, we might 
test a server by setting up all four-way combi-
nations of configuration parameters—such as 
the number of simultaneous connections al-
lowed, the amount of memory, the operating 
system, or the database size—and then run 
the same test suite against each configuration. 
The tests might have been constructed using 
any methodology, not necessarily combinato-
rial coverage. In the second approach, we use 
the covering array to select input data values, 
which then become part of complete test cases, 
creating a test suite for the application. This ap-
proach requires combinatorial coverage of in-
put data values for the tests constructed.

Figure 4 contrasts these two approaches for 
an example e-commerce system. With the first 
approach, we might run the same test set against 
all three-way combinations of configuration 
options. For the second approach, we would 

Figure 3. Generating test cases with a model checker.
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construct a test suite that covers all three-way 
combinations of input transaction fields. Of 
course, we could combine these approaches, 
with the combinatorial tests (approach 2) run 
against all the configuration combinations  
(approach 1). 

Many, if not most, software systems have 
a large number of configuration parameters. 
Many of the earliest applications of combina-
torial testing were in testing all pairs of system 
configurations. For example, telecommunica-
tions software can be configured to work with 
different types of calls (local, long distance, 
international), billing (caller, phone card, 800), 
access (ISDN, VOIP, PBX), and billing servers 
(Windows Server, Linux/MySQL, Oracle). The 
software must work correctly with all these com-
binations, so we could apply a single test suite 
to all pairwise combinations of these four major 
configuration items. Any system with a variety of 
configuration options is a suitable candidate for 
this type of testing.

Configuration coverage is perhaps the most 
developed form of combinatorial testing. Testers 
have used it for years with pairwise coverage, 
particularly for applications that must be shown 
to work across various combinations of operat-
ing systems, databases, and network character-
istics. Recently, a more sophisticated version has 
proved effective for applications with elaborate 
configuration options, such as Web browsers 
and office tools.10 

T his example demonstrated the feasibility of 
higher-strength combinatorial testing for 
small- to medium-sized modules. We’re 

currently working with developers of real-world 
software to measure the costs and benefits of this 
approach for full-scale systems. Interested testers 
can find more on the methods and tools we de-
scribe here at http://csrc.nist.gov/acts. 	
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